

Abstract— Imperative programming languages (such as Java) are

the most widespread programming languages recently. Besides being
quite easy to get familiar with them, they are also perfectly suitable for
business software development. Although the productivity of
imperative languages is much acclaimed, some problems are much
easier to solve in a logical language. Rule based programming allows
us to develop applications using declarative rules. These can simplify
development in applications where such rules based knowledge is used
for decision making. In this paper we will take a look at the tools
techniques for developing rule based applications and discuss their
strengths, capabilities, and limitations.

Keywords—JBoss Rules, JSR 94, Rule Engine.

I. INTRODUCTION

ULE is a principle or regulation governing conduct, action,
procedure, arrangement, etc. It is a statement that defines

or constrains some aspect of the business; a business rule is
intended to assert business structure or to control or influence
the business's behavior. The power of business rules lies in their
ability both to separate knowledge from its implementation
logic and to be changed without changing source code.

rule "Rule Name"
when

 <Conditions>
then

 <Actions>
End

Many business applications have to deal with the dynamic
changes of market economics. For example, applications for
use in the banking and insurance industries must be able to
accommodate the inevitable market changes that no one can
predict or plan for during design.

As the old saying goes, "the only constant thing is change."
This is certainly true for the business logic of software
applications. Changes in the component(s) that implement an
application's business logic can be necessary for several
reasons:

 To fix code defects found during development or after
deployment

 To accommodate special conditions the client initially
didn't mention that the business logic should take into
account

 To deal with a client's changed business objectives

 To conform to your organization's use of agile or
iterative development processes

Given these possibilities, an application that can handle
changes in the business logic with no major complications is
highly desirable — all the more so if the developer making
changes to complex if-else logic isn't the person who wrote the
code.
A solution is to have a rule engine [1], which is basically a set
of tools that enable business analysts and developers to build
decision logic based on an organization's data. The rule engine
evaluates and executes rules. The rule engine applies rules and
actions as defined by end users without affecting how the
application runs. The application is built to deal with the rules,
which are designed separately.

The underlying idea of a rule engine is to externalize the
business or application logic. A rule engine can be viewed as a
sophisticated interpreter of if-then statements. The if-then
statements are the rules. A rule is composed of two parts, a
condition and an action: When the condition is met, the action
is executed. The if portion contains conditions (such as price
>=1000), and the then portion contains actions (such as offer
discount 10%). The inputs to a rule engine are a collection of
rules called a rule execution set and data objects. The outputs
are determined by the inputs and may include the original input
data objects with modifications, new data objects, and possible
side effects.

Figure 1: Rule Engine

Rule based programming with Drools

Narendra Kumar Dipti D Patil Dr. Vijay M.Wadhai
BE Computer Sc., Student, ME Computer Sc., Asst. Professor, PhD Computer Sc., Principal
MITCOE, Pune, INDIA MITCOE, Pune, INDIA MITCOE, Pune, INDIA

R

Narendra Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1121-1126

1121

Rule engines should be used for applications with highly
dynamic business logic and for applications that allow end
users to author business rules. A rule engine is a great tool for
efficient decision making because it can make decisions based
on thousands of facts quickly, reliably, and repeatedly.

Several rules engines are available, including commercial
and open source. Commercial rules engines usually express
rules in a proprietary English-like language. Others write rules
using scripting languages such as Groovy or Python. Examples
of rule engines include Drools, ILOG JRules, BizTalk,
OpenRules, Fair Isaac Blaze Advisor, PegaRules, RulesPower,
and Jess, etc. This article introduces you to the Drools engine
and uses a sample program to help you understand how to use
Drools as part of your business logic layer in a Java application.

1. When and where to use a rules engine?

Not all applications should use a rules engine. If your
business logic code includes a bunch of if-else statements, you
should consider using one. Maintaining complex Boolean logic
can be a difficult task, and a rules engine can help you organize
this logic. Changes are significantly less likely to introduce
errors when you can express the logic using a declarative
approach instead of an imperative programming language.

You should also consider a rules engine if code changes can
cause major financial losses. Many organizations have strict
rules about deploying compiled code in their hosting
environments. For instance, if you need to modify the logic in a
Java class, usually a long, tedious process must occur before the
change makes it to the production environment:

 The application code must be recompiled.
 The code is dropped in a test staging environment.
 The code is inspected by data-quality auditors.
 The change is approved by the hosting environment

architects.
 The change is scheduled for deployment.

Even a simple change to one line of code can cost an

organization thousands of dollars. If you need to follow such
strict rules and find yourself making frequent changes to your
business logic code, then it would make sense to consider a
rules engine. Rule engines are used in applications to replace
and manage some of the business logic. They are best used in
applications where the business logic is too dynamic to be
managed at the source code level -- that is, where a change in a
business policy needs to be immediately reflected in the
application. Applications in domains such as insurance (for
example, insurance rating), financial services (loans, fraud
detection, claims routing and management), government
(application process and tax calculations), telecom customer
care and billing (promotions for long distance calls that needs
to be integrated into the billing system), ecommerce
(personalizing the user's experience), and so on benefit greatly
from using rule engines.

Knowledge of your client can also be a factor in this
decision. Even if you're working with a simple set of
requirements calling for a straightforward implementation in

Java code and the client has a tendency (and the financial and
political resources) to add and change business logic
requirements frequently during the development cycle and even
after deployment. It will be better to use a rules engine from the
beginning.

2. Advantages of adopting a rule-based approach:
 Rules that represent policies are easily

communicated and understood.
 Rules retain a higher level of independence than

conventional programming languages.
 Rules separate knowledge from its implementation

logic.
 Rules can be changed without changing source

code; thus, there is no need to recompile the
application's code.

 Cost of production and maintenance decreases.

II. DROOLS

Drools [2],[3] is an open source rules engine, written in the
Java language, that uses the Rete algorithm [4] to evaluate the
rules. The Drools Rete implementation is called ReteOO,
signifying that Drools has an enhanced and optimized
implementation of the Rete algorithm for Object Oriented
systems. Drools let us express our business logic rules in a
declarative way. We can write rules using a non-XML native
language that is quite easy to learn and understand. And we can
embed Java code directly in a rules file. Drools also have other
advantages. It is:

 Supported by an active community
 Easy to use
 Quick to execute
 Gaining popularity among Java developers
 Compliant with the Java Rule Engine API (JSR 94)
 Free

Figure 2: A Basic Rete network

Drools is a Rule Engine that uses the Rule Based approached

to implement an Expert System and is more correctly classified
as a Production Rule System. A Production Rule System is

Narendra Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1121-1126

1122

Turing complete with a focus on knowledge representation to
express propositional and first order logic in a concise, non
ambiguous and declarative manner. The brain of a Production
Rules System is an Inference Engine (see Fig 2) that is able to
scale to a large number of rules and facts. The Inference Engine
matches facts and data, against Production Rules, also called
Productions or just Rules, to infer conclusions which result in
actions. A Production Rule is a two-part structure using First
Order Logic for knowledge representation.

when
 <Conditions>
then
 <Actions>

The Rules are stored in the Production Memory and the facts
that the Inference Engine matches against the Working
Memory. Facts are asserted into the Working Memory where
they may then be modified or retracted. A system with a large
number of rules and facts may result in many rules being true
for the same fact assertion, these rules are said to be in conflict.
The Agenda manages the execution order of these conflicting
rules using a Conflict Resolution strategy.

A Production Rule System's Inference Engine is statefull and
able to enforce truthfulness - called Truth Maintenance. A
logical relationship can be declared by actions which mean the
action's state depends on the inference remaining true; when it
is no longer true the logical dependent action is undone. The
"Honest Politician" is an example of Truth Maintenance, which
always ensures that hope can only exist for a democracy while
we have honest politicians.

when
 an honest Politician exists
then
 logically assert Hope

when
 Hope exists
then
 print "Hurrah!!! Democracy Lives"

when
 Hope does not exist
then
 print "Democracy is Doomed"

There are two methods of execution for a Production Rule
Systems - Forward Chaining and Backward Chaining; systems
that implement both are called Hybrid Production Rule
Systems. Understanding these two modes of operation are key
to understanding why a Production Rule System is different and
how to get the best from them. Forward chaining is 'data-driven'
and thus reactionary - facts are asserted into the working
memory which results in one or more rules being concurrently
true and scheduled for execution by the Agenda - we start with
a fact, it propagates and we end in a conclusion. Drools is a
forward chaining engine.

Figure 3: Forward chaining

III. RETE ALGORITHM

The word RETE is Latin for "net" meaning network. The
RETE algorithm can be broken into two parts: rule compilation
and runtime execution.

The compilation algorithm describes how the Rules in the
Production Memory to generate an efficient discrimination
network. In non-technical terms, a discrimination network is
used to filter data. The idea is to filter data as it propagates
through the network. At the top of the network the nodes would
have many matches and as we go down the network, there
would be fewer matches. At the very bottom of the network are
the terminal nodes. There are four basic nodes: root, 1-input,
2-input and terminal.

Figure 4: Rete Nodes

The root node is where all objects enter the network. From

there, it immediately goes to the ObjectTypeNode. The purpose
of the ObjectTypeNode is to make sure the engine doesn't do

Narendra Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1121-1126

1123

more work than it needs to. For example, say we have 2 objects:
Account and Order. If the rule engine tried to evaluate every
single node against every object, it would waste a lot of cycles.
To make things efficient, the engine should only pass the object
to the nodes that match the object type. The easiest way to do
this is to create an ObjectTypeNode and have all 1-input and
2-input nodes descended from it. This way, if an application
asserts a new account, it won't propagate to the nodes for the
Order object. In Drools when an object is asserted it retrieves a
list of valid ObjectTypesNodes via a lookup in a HashMap
from the object's Class; if this list doesn't exist it scans all the
ObjectTypde nodes finding valid matches which it caches in the
list. This enables Drools to match against any Class type that
matches with an instance of check.

Figure 5: Rete topography

IV. AN EXAMPLE: GETTING A CAR LOAN

This article shows how to use Drools as part of the business
logic layer in a sample Java application. To follow along, you
should be familiar with developing and debugging Java code
using the Eclipse IDE [7]. And you should be familiar with the
JUnit testing framework and know how to use it within Eclipse.

The process of determining how and when to give a car loan
is complex and can change quite often. We need to consider an
applicant's credit score, income, and down payment, among
other things. Therefore it is good candidate for use with Drools.
First we'll define the CarBuyer class.

package com.carloan;

public class CarBuyer {
 int creditScore;
 int downPayment;
 String name;

 public CarBuyer(String buyerName, int creditScore, int

downPayment) {

 name = buyerName;
 creditScore = creditScore;
 downPayment = downPayment;
 }

 public String getName() {
 return name;
 }

 public int getCreditScore(){
 return creditScore;
 }

 public int getDownPayment(){
 return downPayment;
 }
}

Next, we'll need a class that sets up and runs the rules. Here is

our LoanDeterminizer:

package com.carloan;
import org.drools.jsr94.rules.RuleServiceProviderImpl;

import javax.rules.RuleServiceProviderManager;
import javax.rules.RuleServiceProvider;
import javax.rules.StatelessRuleSession;
import javax.rules.RuleRuntime;
import javax.rules.admin.RuleAdministrator;
import javax.rules.admin.LocalRuleExecutionSetProvider;
import javax.rules.admin.RuleExecutionSet;
import java.io.InputStream;
import java.util.ArrayList;

public class LoanDeterminizer {
 private boolean okToGiveLoan;
 private CarBuyer carBuyer;
 private int costOfCar;
 public boolean giveLoan(CarBuyer h, int costOfCar) {
 okToGiveLoan = true;
 carBuyer = h;
 costOfCar = costOfCar;

 ArrayList<Object> objectList = new ArrayList<Object>();
 objectList.add(h);
 objectList.add(costOfCar);
 objectList.add(this);

 return _okToGiveLoan;
 }

 public CarBuyer getCarBuyer() { return _carBuyer; }
 public int getCostOfCar() { return costOfCar; }
 public boolean getOkToGiveLoan() { return okToGiveLoan; }
 public double getPercentDown() {

return(double)(carBuyer.getDownPayment()/costOfCar);
 }

 private final String RULE_URI = "LoanRules.drl";

 // this is the file name our Rules are contained in
 public LoanDeterminizer() throws Exception {
 prepare();
 }

Narendra Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1121-1126

1124

 private final String RULE_SERVICE_PROVIDER = "http://dro
ols.org/";

 private StatelessRuleSession statelessRuleSession;
 private RuleAdministrator ruleAdministrator;

 private boolean clean = false;

 protected void finalize() throws Throwable
 {
 if (! clean) { cleanUp(); }
 }

 private void prepare() throws Exception
 {
 RuleServiceProviderManager.registerRuleServiceProvider(
 RULE_SERVICE_PROVIDER, RuleServiceProviderImpl.
class);

 RuleServiceProvider ruleServiceProvider =
 RuleServiceProviderManager.getRuleServiceProvider(
 RULE_SERVICE_PROVIDER);

 ruleAdministrator = ruleServiceProvider.getRuleAdministrator();

 LocalRuleExecutionSetProvider ruleSetProvider =
 ruleAdministrator.getLocalRuleExecutionSetProvider(null);

 InputStream rules =

 Exchange.class.getResourceAsStream(RULE_URI);

RuleExecutionSet ruleExecutionSet =
 ruleSetProvider.createRuleExecutionSet(rules, null);

 ruleAdministrator.registerRuleExecutionSet(RULE_URI,

ruleExecutionSet, null);

RuleRuntime ruleRuntime =
 ruleServiceProvider.getRuleRuntime();

 statelessRuleSession =
(StatelessRuleSession) ruleRuntime.createRuleSession(RULE_URI,
 null, RuleRuntime.STATELESS_SESSION_TYPE);
 }

 public void cleanUp() throws Exception
 {
 clean = true;
 statelessRuleSession.release();
 ruleAdministrator.deregisterRuleExecutionSet(RULE_URI,

 null);
 }

}

The testRules class:

package com.carloan;

import junit.framework.TestCase;

public class TestRules extends TestCase {

 public void test_poor_credit_rating_gets_no_loan()
 throws Exception {
 LoanDeterminizer ld = new LoanDeterminizer();
 CarBuyer h = new CarBuyer("buyerName", 100, 20000);

 boolean result = ld.giveLoan(h, 150000);
 assertFalse(result);

 ld.cleanUp();
 }

}

Now we can finally write our rules in LoanRules.drl:

package com.carloan

rule "High credit score always gets a loan"
 salience 1
 when
 buyer : CarBuyer(creditScore >= 700)
 loan_determinizer : LoanDeterminizer(carBuyer == buyer)
 then
 System.out.println(buyer.getName() + " has a credit rating to get
 the loan no matter the down payment.");
 loan_determinizer.setOkToGiveLoan(true);
end

rule "Middle credit score fails to get a loan with small down payment"
 salience 0
 when
 buyer : CarBuyer(creditScore >= 400 && creditScore < 700)
 loan_determinizer : LoanDeterminizer(carBuyer == buyer &&
 percentDown < 0.20)
 then
 System.out.println(buyer.getName() + " has a credit rating to get
 the loan but not enough down payment.");
 loan_determinizer.setOkToGiveLoan(false);
end

rule "Poor credit score never gets a loan"
 salience 2
 when
 buyer : CarBuyer(creditScore < 400)
 loan_determinizer : LoanDeterminizer(carBuyer == buyer)
 then
 System.out.println(buyer.getName() + " has too low a credit rating
 to get the loan.");
 loan_determinizer.setOkToGiveLoan(false);

end

Narendra Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1121-1126

1125

The string following "rule" is the rule's name. Salience is one of
the ways Drools performs conflict resolution. Finally, the first
two lines tell it that buyer is a variable of type CarBuyer with a
credit score of less than 400 and loan_determinizer is
the LoanDeterminizer passed in with the object list where
the carBuyer is what we've called buyer in our rule. If either of
those conditions fails to match, this rule is skipped. An
important aspect of a rule is the optional salience attribute. It is
used to let the rules execution engine know the order in which it
should fire the consequence statements of your rules. The
consequence statements of the rule with the highest salience
value are executed first; the consequence statements of the rule
with the second-highest salience value are executed second,
and so on. This is important when we need our rules to be fired
in a predefined order.

V. CONCLUSION

 Using a rules engine can significantly reduce the complexity
of components that implement the business-rules logic in our
Java applications. An application that uses a rules engine to
express rules using a declarative approach has a higher chance
of being more maintainable and extensible than one that
doesn't. Drools is a powerful and flexible rules engine
implementation. Using Drools' features and capabilities, we
should be able to implement the complex business logic of our
application in a declarative manner. Drools make learning and
using declarative programming quite easy for Java developers.

The Drools classes that this article showed are
Drools-specific. If we were to use another rules engine
implementation with the sample program, the code would need
a few changes. Because Drools is JSR 94-compliant, we could
use the Java Rule Engine API (as specified in JSR 94) to
interface with Drools-specific classes. If we use this API, then
we can change your rules engine implementation to a different
one without needing to change the Java code, as long as this
other implementation is also JSR 94-compliant. JSR 94 does
not address the structure of the rules file that contains your
business rules. The file's structure would still depend on the
rules engine implementation.

REFERENCES
[1] http://en.wikipedia.org/wiki/Business_rules_engine
[2] Paul Browne, “JBoss Drools Business Rules,” ISBN : 1847196063

ISBN 13 : 978-1-847196-06-4, PACKT publishing.
[3] Michal Bali, “Dools JBoss Rules 5.0 Developer’s Guide” ISBN

: 1847195644, ISBN 13 : 978-1-847195-64-7, PACKT publishing.
[4] http://downloads.jboss.com/drools/docs/5.1.1.34858.FINAL/drools-intro

duction/html/index.html.
[5] http://blog.athico.com/2010/03/fosdem-50-minute-introduction-into.html
[6] http://en.wikipedia.org/wiki/Drools.
[7] http://www.eclipse.org/downloads/download.php?file=/technology/epp/

downloads/release/helios/SR2/eclipse-jee-helios-SR2-win32.zip
[8] http://www.cis.temple.edu/~ingargio/cis587/readings/rete.html
[9] http://downloads.jboss.com/drools/docs/5.1.1.34858.FINAL/drools-integ

ration/html_single/index.html
[10] http://downloads.jboss.com/drools/docs/5.1.1.34858.FINAL/drools-flow

/html_single/index.html
[11] http://www.mastertheboss.com/jbpm/45-jboss-drools-1.html
[12] http://www.jessrules.com/jess/docs/52/rete.html
[13] http://www.jbug.jp/trans/jboss-rules3.0.2/ja/html/ch01s06.html
[14] http://en.wikipedia.org/wiki/Rete_algorithm

[15] http://en.wikipedia.org/wiki/Business_rule_management_system

AUTHOR PROFILES

Narendra kumar is a student in Department of Computer
Engineering in MIT College of Engineering, Pune, India. He is
pursuing his Bachelor’s degree in Computer Science and will
be completing his engineering in June, 2011. .
Email : narendra210389@gmail.com

Prof. Dipti D Patil is pursuing her PhD in computer sc from
university of Pune. She has received M.E. degree in Computer
Engineering from Mumbai University, India in 2008 and B.E.
degree in Computer Engineering from Mumbai University in
2002. She has worked as Head & Assistant Professor in
Computer Engineering Department in Vidyavardhini’s College

of Engineering & Technology, Vasai. She is currently working as Assistant
Professor in MITCOE, Pune. Her Research interests include Data mining and
Body Area Network.

Dr. Vijay M.Wadhai received his Ph.D. degree from
Amravati University in 2007, M.E. from Gulbarga University
in 1995 and B.E. from Nagpur University in 1986. He has
experience of 25 years which includes both academic (17
years) and research (8 years). He has been working as a
Principal of MITCOE, Pune and simultaneously handling the

post of Director - Research and Development, Intelligent Radio Frequency
(IRF) Group, Pune (from 2009). He is currently guiding 12 students for their
PhD work in both Computers and Electronics & Telecommunication area. His
research interest includes Data Mining, Natural Language processing,
Cognitive Radio and Wireless Network, Spectrum Management, Wireless
Sensor Network, VANET, Body Area Network, ASIC Design - VLSI. He is a
member of ISTE, IETE, IEEE, IES and GISFI (Member Convergence Group),
India.

Narendra Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1121-1126

1126

